Heterogeneity in active life expectancy:

A finite mixture model

Douglas Wolf

Jennifer Karas Montez

Aging Studies Institute, Syracuse University

Support provided by grant number U01-AG-032947 from NIA and R03-SH000061 from the Centers for Disease Control.

Two main ways to compute ALE:

(1) "Sullivan"

Computationally simple

Uses population-level data to compute population-level indicator

Imposes NO assumptions about underlying disability dynamics (i.e., onset, recovery, timing)

Two main ways to compute ALE:

(2) MSLT ("event-history")

Computationally complex

Uses individual-level data to compute population-level indicator

Imposes strong (and obviously inappropriate) Markov assumption about underlying disability dynamics

Requires "event" data (which we <u>never</u> have; there may not even BE "events")

Both: typically ignore unobserved heterogeneity

A new approach: a discrete-mixture joint model of ...

- (a) disability "trajectories" (average pathways)
- (b) survivorship/mortality
- (c) missingness vs. completeness of panel data

This combines some of the attractive features of "Sullivan" (mainly, no assumption about disability dynamics) with attractive features of MSLT (uses individual-level panel data) while introducing

- (i) mortality correlated with disability risk,
- (ii) explicit treatment of unobserved heterogeneity,
- (iii) a correction for informative missing data.

Data:

Sample consists of HRS respondents age 65 plus in 1998, followed biennially to 2014 (9 "waves")

Variables:

 D_1, \ldots, D_9 = binary indicators of "gets help with ADLs" age₁, ..., "lastage" (= age₉ OR age at death) indicator of censorship vs. observed death R_1, \ldots, R_9 = "retained" (a non-missingness indicator)

Model: 3-dimensional joint model of D, S, R

In each dimension we condition on latent (unobserved) class membership; there are *C* classes (the number of which is determined by the data)

Conditional on c = 1, ..., C:

$$Pr(D_t = 1) = logit(\beta_{0c} + \beta_{1c} age_t + \beta_{2c} age_t^2)$$

survival/death at "lastage" uses Gompertz function with intercept α_c and slope λ

 $Pr(R_t = 1) = logit(\theta_c)$ (i.e., a Bernoulli process)

This is a type of "frailty" model; frailty takes the form of (unobserved) class-membership indicator (rather than as (additive) term in (log-) hazard of mortality

At "origin" age, age₀ (for us, age 65):

Pr(individual *i* is in class c) = $\pi_c(age_0)$

Class-membership probabilities evolve with age due to selective mortality (Vaupel and Yashin 1985):

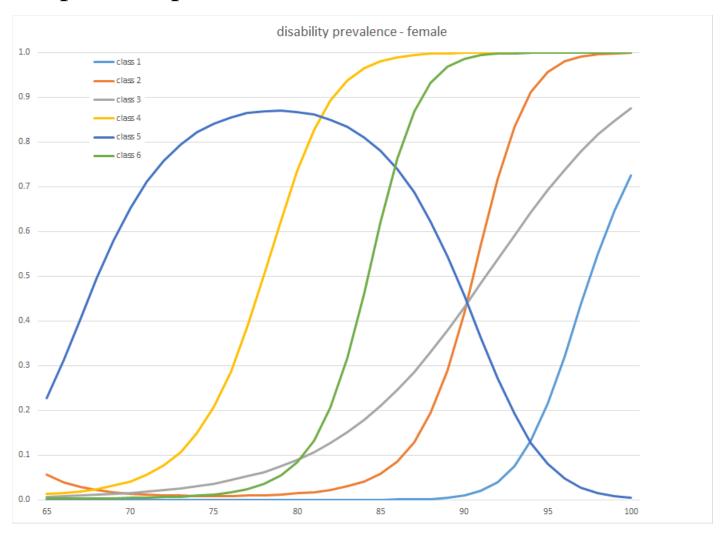
Pr(in class c AND survive to age_t) = $\pi_c(age_0)S_c(a_t)$

Pr(in class
$$c$$
 at age_t) = $\pi_c(age_t) = \frac{\pi_c(age_0)S_c(a_t)}{\sum_{c'=1}^{C} \pi_{c'}(age_0)S_{c'}(a_t)}$

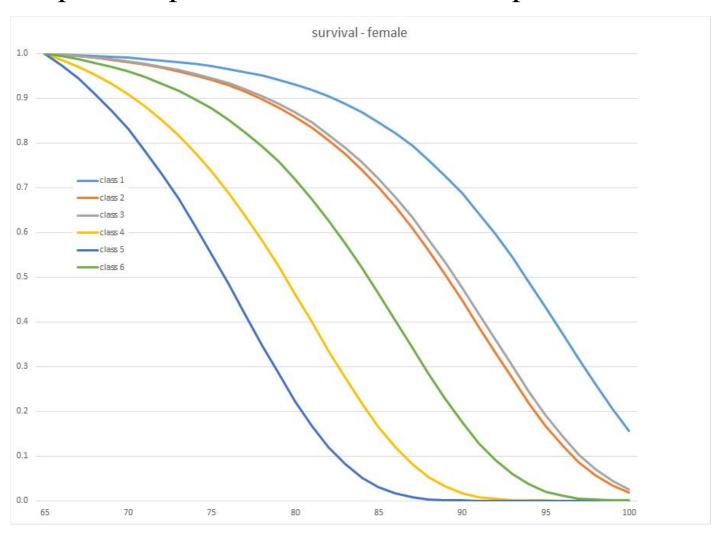
Results:

Data indicates 6 classes for women, 5 for men.

Graphical representation of disablement, women:



Graphical representation of survivorship, women:



Delayed disablement combines with <u>longer</u> survival, and early disablement combines with <u>poorer</u> survival (i.e., mortality risk and probability of having a disability are positively correlated).

Summary of results:

	class 1	class 2	class 3	class 4	class 5	class 6	Total
Women							
DLE	2.0	4.1	6.0	7.3	6.6	7.5	5.5
ALE	26.7	20.9	20.5	10.6	4.0	16.0	17.1
TLE	28.7	25.1	26.5	17.9	10.6	23.6	22.6
$\pi_{65}(c)$	14.7%	27.4%	7.0%	17.8%	10.2%	23.0%	
Men							
DLE	2.5	2.5	4.2	5.8	9.7		4.6
ALE	20.9	22.3	15.7	10.3	4.1		15.2
TLE	23.4	24.7	19.9	16.1	13.7		19.9
$\pi_{65}(c)$	4.3%	28.4%	33.0%	23.0%	11.2%		

Conclusions:

Women's ALE > men's ALE;

Women's DLE > men's DLE;

There is a LOT of heterogeneity;

For each gender, there is a modestly substantial class with very unfavorable LE: 10% of women in class where 62% of remaining lifetime spent with disability; 11% of men are in class where 71% of remaining lifetime spent with disability;

For each gender, the largest class has least- (or nearly so) disabled residual life expectancy;

Some evidence of "recovery" but relatively few survive to manifest it.

Limitations:

Model seems to need some work (TLE 9-11% too high compared to US 2006 LT);

Requires use of "synthetic cohort" approach (but ALL methods of calculating ALE do);

Requires complex estimation software (but our SAS program is freely available).